

Spatial modelling of Rift Valley fever vectors in Senegal

Dr Cheikh Talla

Epidemiology, clinical research and data science Institut Pasteur de Dakar

Geographical distribution of Rift Valley fever

Introduction

- Problem of vector born disease (RVF):
 - Lack of treatments
 - Lack of an effective vaccine
 - Limited means of surveillance
 - Lack of means of prevention

« All models are wrong, but some are useful »

Georges Box

(British statistician (1919-2013)

RVF modelling in Africa

- Modelling approach was adopted in East Africa based on the identification of climatic and environmental variables controlling the occurrence of RVF virus
 - Pacific and Indian Ocean sea surface temperature anomalies (SSTs)
 - Satellite normalized difference vegetation index anomaly(NDVI)

Institut Pasteu

do Daka

Anyamba e al 2009

RVF Modelling in Africa

 An early warning system was set up allowing to predict RVF outbreaks up to 5 months in advance using parameters such as the normalized difference vegetation index (NDVI) and sea surface temperature anomalies

RVF activities in Kenya

Institut Pasteur

de Dakar

64% of all human cases fell within the areas mapped to be at risk to RVF activity

Anyamba et al 2009

RVF modelling in Africa

- Prediction of RVF outbreaks in Senegal during 1993, Burkina Faso in 1983, and Central Africa in 1985 failed due to a possible:
 - Lack of sensitivity of the system like the threshold of the NDVI
 - Lack of data from animal/human cases for model validation
 - Difference of the dynamics and mechanisms of emergence between East and West Africa
 - Variables involved in the transmission are different

RVF modelling in west Africa

- Several models have been developed for the West African context at a local-scale but the analysis is restricted to the impact of rainfall in most of these models, which lack the spatial dimension.
- Most of these models have been developed specifically for Ae.vexans

RVF modelling in Senegal

Institut Pasteur

de Dakar

Tran et al 2019

- Quantify the abundance of vectors (Ae. vexans, Cx. poicilipes)
- Identify climatic and environmental variables impacting on the abundance of vectors (RVF)
- Identify periods and areas at risk by generating prediction maps

Study area

- Bi-weekly collection data from 2005-2006
- during the rainy season
- 79 sites

Spatio-temporal model framework

Aedes vexans :

$$\begin{array}{rcl} Y_{st} & \sim & \textit{Pois}(\lambda_{st}) \\ \log(\lambda_{st}) & = & \sum_{q} \beta_{q} X_{qst} + B_{s'(s)} + q_{t} + \sin(\pi t/9) + \cos(\pi t/3) + \varepsilon_{st} \\ B_{s'(s)} & \sim & N(0, \sigma_{B}) \\ \varepsilon_{st} & \sim & N(0, \sigma_{\varepsilon}^{2}) \\ q_{t} & \sim & N(q_{t-1}, \sigma_{t}^{2}) \end{array}$$

Culex poicilipes :

$$\begin{array}{rcl} Y_{st} & \sim & \textit{Pois}(\lambda_{st}) \\ \log(\lambda_{st}) & = & \sum_{q} \beta_{q} X_{qst} + U_{s} + q_{t} + 5 \sin(\pi(t-3)/6) \\ U_{s} & \sim & \textit{CAR}(\sigma_{u}^{2}) \\ q_{t} & \sim & \textit{N}(q_{t-1}, \sigma_{t}^{2}) \end{array}$$

RVF modelling in West Africa

- Vector-borne diseases are influenced by several factors:
 - Human factor
 - Environmental factor (spatial structure)
 - Climatic factor
 - Animal factor
 - Time factor (seasonality)

Identification of variables

- Rainfall
- Maximum temperature
- Minimum temperature
- Relative humidity
- The biotope (temporary ponds, bare soil, ...)
- NDVI (Normalized Difference Vegetation Index)
- Distance between the collection point and the nearest pond
- The collection time period

Model results

Spatial & temporal distribution of RVF vectors abundance

GLMM model: with spatial correlation

- In the absence of an alert threshold for high densities
 - Determine areas with high mosquito densities value (Hotspot Getis Ord)
 - Identify climate and environmental factors impacting on the likelihood of hotspot occurrence

Spatial dependency or auto-correlation notion

- Spatial autocorrelation measures how much close objects are in comparison with other close objects. It can be classified as positive, negative and no spatial auto-correlation
- It evaluates whether the spatial pattern expressed is clustered, dispersed, or randomized.

Spatial autocorrelation

- Positive spatial autocorrelation is when similar values cluster together in a map.
- Negative spatial autocorrelation is when dissimilar values cluster together in a map.

Spatial autocorrelation

1=+0.393 n_{BIW} = 34 n_{BB} = 42 n_{WW} = 36

(B) 1=-0.393 n_{trw} = 78 n_{trw} = 16 n_{ww} = 18

	(E)			
1=+0.857				
$n_{BB} = 52$ $n_{AW} = 52$				

Conceptualization of Spatial Relationships

- Spatial relationships (neighborhood) you use will depend on what you're measuring:
 - Distance band
 - Polygon contiguity (Contiguity edges)
 - K nearest neighbors

Local autocorrelation index

- Locations with high values with similar neighbours: highhigh. Also known as « hot spots »
- Locations with low values with similar neighbours: low-low.
 Also known as « cold spots »

• Locations with no significant local autocorrelation

Visualization of hotspots

Presence of spatial autocorrelation

Institut Pasteur

de Dakar

$$\log\left(\frac{p_{st}}{1-p_{st}}\right) = \beta' X_{st} + b_s$$

- Significant and positive spatial autocorrelation for distance: radius 1km radius
- spatial autocorrelation presence means: interdependence in space

Predictive ability of the model

Hotspot identification for Ae. vexans

Hotspot identification for *Cx. poicilipes*

Variables impacted on the likelihood hotspot occurrence

Ae. vexans

Model ranking	Intercept	Distance	Hr	NDM	Rainfall	Tmax	Tmin	AIC	weight
1	21.60	-0.0017	-0.0618			-0.2508	-0.4157	571.3	0.368
2	22.02	-0.0017	-0.0723	1.988		-0.2556	-0.4231	571.8	0.283
3	21.77	-0.0018	-0.0671		0.0019	-0.2382	-0.4325	572.9	0.168
4	22.03	-0.0017	-0.074	1.830	0.0009	-0.2487	-0.4297	573.7	0.109
Relative Importance		0.958	0.975	0.419	0.299	0.994	0.992		
Model-average	21.810 ± 11.19 ^a	-0.002 ± 0.001 ^a	-0.067 ± 0.043 ^a	1.944 ± 3.329	-0.001 ± 0.006	-0.250 ± 0.130 ^a	-0.423 ± 0.225ª		

^aindicates significance at the 95 % level. Hr the relative humidity, Tmax maximum temperature, Tmin minimum temperature; Rainfall: cumulative rainfall

Talla et al 2016

Provide information on areas at risk

Reduce contact between hosts and vectors

>Optimize sentinel sites implemented at animal level

>Improve surveillance and control of RVF vectors

